B.Sc.

4th Semester Examination

CHEMISTRY (Honours)

Paper - C9T

(Inorganic Chemistry)

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any five questions:

- 5×2
- (a) HF cannot be stored in glass bottle. Explain.
- (b) Write two characteristic features of Ellingham diagram.
- (c) What are fluorocarbons? How are they prepared?

A CONTROL OF THE PROPERTY OF THE PARTY OF TH

the second secon

[Turn Over]

- (d) Suggest a structure for a dimer of $BeCl_2$ and explain how its formation illustrates $BeCl_2$ acting as a Lewis acid.
- (e) Why the reactivity at borazine contrasts sharply with that of benzene?
- (f) $\left[Co(NH_3)_5 NO_2 \right]^{2+}$ may have two different colors. Comment.
- (g) What happen when XeO_3 reacts with KI in presence at dil H_2SO_4 ?
- (h) Draw the structure of polythionates of type $\left[SnO_6\right]^{2-}$. How are they prepared?

Group - B

Answer any four questions.

4×5

- 2. (a) Write notes on the structures of XeF_2 , XeF_4 and XeF_6 .
 - (b) Outline the principle of zone refining. 2
- 3. (a) State basic concepts of Werner's coordination theory and mention its limitations.

(b) Give the product A and B

- 4. (a) Write IUPAC nomenclature of
 - (i) $K\left[Pt Cl_3\left(C_2H_4\right)\right]$

(ii)
$$\left[Co\left(Co\left(NH_3\right)_4\left(OH\right)_2\right)_3\right]^{6+}$$
 2

- (b) Describe how BH_3 can behave as both an electron acceptor and an electron donor in the adduct $OC.BH_3$.
- (c) Explain why PCl₃ and SbCl₃ behave differently in water.
- 5. (a) $B(OH)_3$ behave as a weak acid but acid strength increases in presence of 1, 2-diols. Explain.

[Turn Over]

	Suggest v	why the	NSi_3	skeleton in	$N(SiMe_3)_3$
	is planar.			(36)	2

(c) Complete the following equation

$$\begin{bmatrix} 10_3 \end{bmatrix}^- + I^- + H^+ \longrightarrow 1$$

- 6. (a) Both NO and NO₂ are odd electron molecules but only NO₂ dimerizes readily. Explain. 2
 - (b) Give a short account on the structure and bonding of B_2H_6 .
- 7. (a) What are siloxanes?
 - (b) Show stepwise hydrolysis product of P_4O_{10} . 2
 - (c) Describe a suitable synthesis of Xenon trioxide.

Group - C

Answer any one question.

1×10

8. (a) Copper can be extracted by hydrometallurgy but not zinc. Explain.

- (b) Which of the complexes
 - (i) $\left[Cr(EDTA)\right]^{-}$
 - (ii) $\left[Ru(en)_3\right]^{2+}$
 - (iii) $[Pt(dien)Cl]^+$

are chiral?

3

- (c) Explain the different colours of halogen 2 molecules.
- (d) Discuss the structure of $S_2O_3^{2-}$.
- (e) Give the application of noble gases.
- 9. (a) Write note on pseudohalide.
 - (b) What is ferrosilicon?
 - (c) Arrange the following in order of increasing acid strength and give reasons for your choice:

 BF_3 , BCl_3 , BBr_3 .

[Turn Over]

- (d) The triiodide ion, I_3^- is linear, but I_3^+ is bent. Explain.
- (e) The bond angles for the hydrides of the Group 15 elements are as follows: NH₃, 107.8°, PH₃, 93.6°; AsH₃, 91.8°; and SbH₃, 91.3°. Account for this trend.